Proportional pressure relief valve

Type DBETR

Nominal size 6
Component series 1X
Maximum operating pressure 350 bar
Maximum flow 3 l/min

Overview of contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Ordering details</td>
<td>2</td>
</tr>
<tr>
<td>Preferred types</td>
<td>2</td>
</tr>
<tr>
<td>Symbol</td>
<td>3</td>
</tr>
<tr>
<td>Function, section</td>
<td>3</td>
</tr>
<tr>
<td>Technical data</td>
<td>4, 5</td>
</tr>
<tr>
<td>Electrical connections, plug-in connectors</td>
<td>6</td>
</tr>
<tr>
<td>Characteristic curves</td>
<td>7, 8</td>
</tr>
<tr>
<td>Unit dimensions</td>
<td>9</td>
</tr>
</tbody>
</table>

Features

- Valve for electrical remote control of pressure
- Direct operated proportional pressure relief valve, of poppet design
- Proportional solenoid actuation with inductive position transducer (pressure balanced)
- For subplate mounting:
 - Porting pattern to ISO 4401-03-02-0-94
 - Subplates to catalogue sheet RE 45052 (separate order), see page 9
- Electrical closed loop position control of the spring pretension, hence low hysteresis
- Good repeatability
- Valve and electronic control from one source
- Control electronics:
 - Analogue amplifier VT-VRPA1-100-1X/ in Eurocard format (separate order), see page 5
 - Analogue amplifier of modular design VT-MRPA1-100-1X/V0/0 (separate order), see page 5
Ordering details

Component series 10 to 19
(10 to 19: unchanged installation and connection dimensions)

Pressure stage:
- Up to 30 bar = 30
- Up to 80 bar = 80
- Up to 180 bar = 180
- Up to 230 bar = 230
- Up to 315 bar = 315
- Up to 350 bar = 350

Control electronics supply voltage
24 V DC = G24

Preferred types

<table>
<thead>
<tr>
<th>Type</th>
<th>Material number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBETR-1X/30G24K4M</td>
<td>R900954438</td>
</tr>
<tr>
<td>DBETR-1X/80G24K4M</td>
<td>R90034966</td>
</tr>
<tr>
<td>DBETR-1X/180G24K4M</td>
<td>R900491698</td>
</tr>
<tr>
<td>DBETR-1X/230G24K4M</td>
<td>R900370146</td>
</tr>
<tr>
<td>DBETR-1X/315G24K4M</td>
<td>R900485944</td>
</tr>
<tr>
<td>DBETR-1X/350G24K4M</td>
<td>R900352424</td>
</tr>
</tbody>
</table>

Further preferred types and standards can be found within the EPS (Standard Price List).
Symbol

Function, section

Proportional pressure relief valve type DBETR is a remote control valve. In design terms it is a direct operated pressure relief valve of poppet design.

This valve regulates pressure in proportion to the electrical command value.

The valve consists basically of a housing (1), proportional solenoid (2) with inductive positional transducer (3), valve seat (4) and valve poppet (5).

Pressure is set by adjusting the command value potentiometer (0 to 9 V). Adjusting the command value causes tensioning of the compression spring (2) via the electronic controls and the proportional solenoid (6). Tensioning of the compression spring (6), i.e. the position of the spring plate (7), is sensed by the inductive positional transducer (3). Any deviations from the command value are corrected by the closed loop positional control.

The use of this principle eliminates the effect of solenoid friction.

Advantages:
- Low hysteresis
- Good repeatability

If the command value is zero or in the event of a power failure to the proportional solenoid or cable breakage at the positional transducer the lowest possible setting pressure will be set.

Note!
To ensure optimum valve function bleeding must be carried out at the commissioning stage:
- Remove item 8,
- Pour pressure fluid into open screw hole at item 8,
- When no further bubbles appear screw in item 8.
- Emptying of tank lines is to be avoided. With the appropriate installation conditions, a back pressure valve is to be installed (back pressure approx. 2 bar).
Technical data (for applications outside these parameters, please consult us!)

General

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>4.0 kg</td>
</tr>
<tr>
<td>Installation</td>
<td>Preferably horizontal</td>
</tr>
<tr>
<td>Storage temperature range °C</td>
<td>– 20 to +80</td>
</tr>
<tr>
<td>Ambient temperature range °C</td>
<td>– 20 to +50</td>
</tr>
</tbody>
</table>

Hydraulic (measured with HLP46 at 40 °C ± 5 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure – Port P bar</td>
<td>to 350</td>
</tr>
<tr>
<td>– Port T, with pressure control bar</td>
<td>to 2</td>
</tr>
<tr>
<td>– Without pressure control, T port bar</td>
<td>to 100</td>
</tr>
<tr>
<td>Max. settable pressure – Pressure stage 30 bar</td>
<td>30</td>
</tr>
<tr>
<td>– Pressure stage 80 bar</td>
<td>80</td>
</tr>
<tr>
<td>– Pressure stage 180 bar</td>
<td>180</td>
</tr>
<tr>
<td>– Pressure stage 230 bar</td>
<td>230</td>
</tr>
<tr>
<td>– Pressure stage 315 bar</td>
<td>315</td>
</tr>
<tr>
<td>– Pressure stage 350 bar</td>
<td>350</td>
</tr>
<tr>
<td>Min. settable pressure</td>
<td>(See p_{min}-characteristic curves on pages 7 and 8)</td>
</tr>
<tr>
<td>Max. flow – Pressure stage 30 l/min</td>
<td>3</td>
</tr>
<tr>
<td>– Pressure stage 80 l/min</td>
<td>3</td>
</tr>
<tr>
<td>– Pressure stage 180 l/min</td>
<td>3</td>
</tr>
<tr>
<td>– Pressure stage 230 l/min</td>
<td>3</td>
</tr>
<tr>
<td>– Pressure stage 315 l/min</td>
<td>2</td>
</tr>
<tr>
<td>– Pressure stage 350 l/min</td>
<td>2</td>
</tr>
</tbody>
</table>

| Pressure fluid | Mineral oil (HL, HLP) to DIN 51524, Other pressure fluids on request! |
| Pressure fluid temperature range °C | – 20 to +80 |
| Max. permissible degree of pressure fluid contamination |
Cleanliness class to ISO 4406 (c)	Class 20/18/15 ¹
Viscosity range mm²/s	15 to 380
Hysteresis %	< 1 of max. settable pressure
Repeatability %	< 0.5 of max. settable pressure
Linearity %	< 1.5 of max. settable pressure
Typical variation %	± 3 of max. settable pressure

<table>
<thead>
<tr>
<th>Stepped response $T_u + T_g$ (0 to 100 %), dependent on the system</th>
<th>$P_{\text{min}} - P_{\text{max}}$</th>
<th>$P_{\text{max}} - P_{\text{min}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Pressure stage 30, 80, 180 ms</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>– Pressure stage 230, 315, 350 ms</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

¹) The cleanliness class stated for the components must be adhered too in hydraulic systems. Effective filtration prevents faults from occurring and at the same time increases the component service life.

For the selection of filters see catalogue sheets RE 50070, RE 50076, RE 50081, RE 50086 and RE 50088.
Technical data (for applications outside these parameters, please consult us!)

Electrical (solenoid)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V)</td>
<td>24 DC</td>
</tr>
<tr>
<td>Max. power consumption (VA)</td>
<td>50</td>
</tr>
<tr>
<td>Coil resistance – Cold value at 20 °C</td>
<td>Ω 10</td>
</tr>
<tr>
<td>Coil resistance – Max. warm value</td>
<td>Ω 13.9</td>
</tr>
<tr>
<td>Duty %</td>
<td>100</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>With component plug to DIN EN 7530-803</td>
</tr>
</tbody>
</table>
| | Plug-in connector to DIN EN 7530-803
| Protection to EN 60529 | IP65 with mounted and fixed plug-in connector |

Electrical (inductive position transducer)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil resistance – Total resistance of the coils at 20 °C</td>
<td>1 and 2 31.5</td>
</tr>
<tr>
<td>Inductivity (Ω)</td>
<td>6 to 8</td>
</tr>
<tr>
<td>Oscillator frequency (kHz)</td>
<td>2.5</td>
</tr>
<tr>
<td>Protection to EN 60529</td>
<td>IP65 with mounted and fixed plug-in connector</td>
</tr>
</tbody>
</table>

1) Separate order, see page 6

When connecting the electrics, the protective conductor (PE) must be connected according to the relevant regulations.

Control electronics (separate order)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier in Eurocard format</td>
<td>Analogue VT-VRPA1-100-1X/ to catalogue sheet RE 30118</td>
</tr>
<tr>
<td>Amplifier of modular design</td>
<td>Analogue VT-MRPA1-100-1X/V0/0 to catalogue sheet RE 30221</td>
</tr>
</tbody>
</table>

Note: For details regarding the environmental simulation test covering EMC (electro-magnetic compatibility), climate and mechanical loading see RE 29166-U (declaration regarding environmental compatibility).
Electrical connections, plug-in connectors (in mm)

Proportional solenoid

Connection at component plug

Connection at plug-in connector

Plug-in connector to DIN EN 175301-803
Separate order under Material No. R901017011 (plastic version)

Inductive position transducer

Plug-in connector GM 209N (Pg9) with flat seal GM 207-3
Separate order under Material No. R900013674 (plastic version)

Flat seal GM 207-3
Separate order under Material No. R900013675
Characteristic curves (measured with HLP46, $\theta_{\text{oil}} = 40 \, ^\circ\text{C} \pm 5 \, ^\circ\text{C}$ and without back pressure)

- **Pressure stage 30 bar**
 - 1 - Flow = 0.5 l/min
 - 2 - Flow = 1.5 l/min
 - 3 - Flow = 3.0 l/min

- **Pressure stage 80 bar**
 - 4 - Flow = 0.5 l/min
 - 5 - Flow = 1.5 l/min
 - 6 - Flow = 3.0 l/min

- **Pressure stage 180 bar**
 - 7 - Flow = 0.5 l/min
 - 8 - Flow = 1.5 l/min
 - 9 - Flow = 3.0 l/min
Characteristic curves (measured with HLP46, $\theta_{oil} = 40 \, ^\circ C \pm 5 \, ^\circ C$ and without back pressure)

Pressure stage 230 bar

- Flow = 0.5 l/min
- Flow = 1.5 l/min
- Flow = 3.0 l/min

Pressure stage 315 bar

- Flow = 1.0 l/min
- Flow = 2.0 l/min

Pressure stage 350 bar

- Flow = 1.0 l/min
- Flow = 2.0 l/min
Unit dimensions (in mm)

1. Valve housing
2. Proportional solenoid with inductive position transducer
3. Name plate
4. Blind hole
5.1 Plug-in connector to DIN EN 175301-803, separate order, see page 6
5.2 Plug-in connector to GM209 (Pg9) manufacturer Hirschmann; separate order, see page 6
6. Space required to remove the plug-in connector
7. Identical seal rings for P, T and blind hole
8. Machined valve mounting surface, location of the ports to ISO 4401-03-02-0-94
 Deviations from the standard:
 - Locating pin not present
 - “A” and “B” ports not drilled
9. Bleed screw
10. Lock nut 27A/F
11. Internal hexagon 8A/F

Required surface quality of the valve contact face

Subplates to catalogue sheet RE 45052 and valve fixing screws must be ordered separately.

Subplates:
- G 341/01 (G1/4)
- G 342/01 (G3/8)

Valve fixing screws:
(not included within the scope of supply)
Due to strength (tensile) reasons only use the following valve fixing screws:
4 S.H.C.S. ISO 4762 - M5 x 50 - 10.9-flZn-240h-L
(friction value 0.08 - 0.14 to VDA 235-102);
Tightening torque $M_a = 7$ Nm ± 10%
Separate order, Material No. R913000064.

Due to strength (tensile) reasons only use the following valve fixing screws:

- G 341/01 (G1/4)
- G 342/01 (G3/8)

Valve fixing screws:
(not included within the scope of supply)
Due to strength (tensile) reasons only use the following valve fixing screws:

4 S.H.C.S. ISO 4762 - M5 x 50 - 10.9-flZn-240h-L
(friction value 0.08 - 0.14 to VDA 235-102);
Tightening torque $M_a = 7$ Nm ± 10%
Separate order, Material No. R913000064.
Notes

© This document, as well as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.
© This document, as well as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.