Selecting Proportional Valves and High Response Valves

Neal Hanson
Product Manager Industrial Controls
Bethlehem PA
So Many Proportional and Servo Valves

Which One Do I Need?
Considerations for a Basic Application

- Most Important Issues Are
 - Flow Requirement (Easy to Find)
 - Specified or Desired Actuator Speed
 - Limits by Pump flow, HP, Budget
 - Dynamic Performance
 - Acceleration
 - Cycle Time
 - Accuracy
 - Especially in Closed Loop Applications
Considerations for a Basic Application

- Control Valves Belong to 3 Categories
 - Proportional Valves
 - Servo Valves
 - Servo-Solenoid or High Response Valves
Proportional Valve without Feedback
4WRA - Direct Operated

- Proportional Valves have Proportional Spool in Cast Housing – No Sleeve/Spool
 - Good Flow Capacity
 - Low Cost
- Solenoid Current Is Directly Proportional To Spool Position

Example: 4WRAE6
data sheet RE29055
Proportional Valve without Feedback
4WRA - Direct Operated

- Each Size Directional Body Has Different Spool Flow Capacities
- Proportional “Nominal Flow” is measured at $\Delta p = 145$ psi (10 bar)
- Example: 4WRA (Size 6 & 10)
 Nominal Flows: 7 to 60 LPM @ Δp
 145 psi (10 bar)
- 145 psi Drop Across This Valve is Not Typical of Your System!
 - Leading to a Common Mistake: Super-sizing the Spool

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Estimate Pressure Drop Required Across Valve
(System Pressure - Load Pressure - Other Pressure Drops)

Find Target Flow At ~90% Command, Compare Δp_{curve} with above

Avoid High Valve Δp (Above 50% System Pressure Dropped in Valve Can Cause Rotational Forces on Proportional Spool)
Proportional Valve without Feedback
4WRA - Direct Operated

- Direct Operated Valves Have Power Limits, $Q_{\text{valve}} \cdot \Delta p_{\text{valve}}$
- Flow Forces Try to Center Spool

Power Limit
30 LPM 4WRA6
RE29055

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Proportional Valve without Feedback
4WRA - Direct Operated

- **Step Response**
 - 4WRA 6
 - RE 29055

- Hysteresis \(< 5\%\)
 - Reversal Error \(< 1\%\)
 - Response Sensitivity \(< 0.5\%\)
Proportional Valves without Feedback
4WRZ - Pilot Operated

- Larger Flow Proportional, like 4WRZ
 Nominal Flow ...1000 LPM (265 GPM)
 @ Δp 10 bar (145 psi)
- Normally Open Loop Control,
 Accel/Decel set by Ramp Time
- Clamp, Transfer, Hydraulic Motor Speed

4WRZ (external amplifier)
4WRZE (internal electronics)
RE 29115

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications.
We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Proportional Valves with LVDT Feedback
4WRE - Direct Operated

- Adding Spool Position Feedback Improves Performance
 - Much Lower Hysteresis ≤ 0.1%
 - Better Accuracy ≤ 0.05%
 - Greater Flow Capacity
 (4WRE: 4 to 75 Lpm @ 10 bar Δp)
Proportional Valve Spools

Spool Types

- **E-spool**: All Ports Blocked, Overlap
 - Differential Cylinder Can Drift
 - Spool Jump Compensation Reduces Deadband
 - Closed Loop Positioning Possible with Advanced PID-Controller

- **V-spool**: ±1% Underlap
 - For Closed Loop Position, Pressure, and Force Control

- **W-spool**: 3% Leakage A & B to T
 - For Cylinders, Not Good for Closed Loop

- **2:1 Spools for Diff. Cylinders can**
 - Prevent Cylinder Cavitation
 - Improve Decel/Reversal Time
 - Balance Valve Δp in each path

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Proportional Valves with LVDT Feedback
4WRE - Direct Operated

- Valve Frequency Response (about 40 Hz small signal)
- Satisfies Many Closed Loop Application Requirements

Bode-diagram 4WRE6 V
RE 29061

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Servo Valves
4WS2EM (6, 10)

- Servo Valve Is Sleeve and Spool in Main Stage
- Servo Torque Motor and Orifices Control Pressure Balance to Position Main Spool
Servo Valves
4WSE3E (16, 25, 32)

- Flows to 1000 Lpm at 70 bar Δp
- Sleeve/Spool in Main Stage
- Longer life (HFC water glycol, or other difficult fluids)

4WSE3E
RE29620, RE29621, RE29622
High Response Valves
(Servo-Solenoid Valves)
Servo Solenoid Valves
4WRPEH - Direct Operated

- Very Fast Solenoid with LVDT Feedback
 - Directly Positions Spool
- No Flapper/Nozzle
- No Jet-pipes
- No Pilot Leakage

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Servo Solenoid Valves
4WRPEH - Direct Operated

- Spool and Sleeve Assembly
 - Zero Overlap
 - Accurate
 - Symmetrical
 - Linear
- Normal Filtration
- Main Sleeve: Nominal Flow
 - 2 to 100 Lpm (size 6 & 10)
 - @ Δp 70 bar or 1000 psi!
 like a Servo Valve

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications.
We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.

4WRPH6, 4WRPEH6,
4WRPEH10
RE29035, RE29037
- Spool Options
 - All Zero Overlap, for Close Loop Applications
 - Failsafe Position (Power Off / Fault)
 - May Eliminate Need for Blocking Valve

C5, C1 have 2:1 flow ratios
Servo Solenoid Valves
4WRPEH - Direct Operated

- Most Reliable OBE Available
- 25g for 24 Hours in 3 Axis
- Long Service Life
- 60 to 100 Hz @ -90 Deg, small signal
- Outstanding Performance for Many Closed Loop Applications

4WRPH6, 4WRPEH6, 4WRPEH10
RE29035, RE29037
Servo Solenoid Valves
4WRL - Pilot Operated

- Pilot is 4WRPEH (Sleeve/Spool)
- Proportional Main Stage with LVDT Feedback
- Many Same Advantages
 - Robust
 - Reliable

4WRL
RE 29088
RE 29089

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Servo Solenoid Valves
4WRL - Pilot Operated

- Main Stage Proportional Spool in a Cast Housing
- Nominal Flow (Size 10 to 35)
 - 50 to 1100 LPM @ 10 bar or 145 psi ∆p, like a Proportional

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Servo Solenoid Valves
4WRLE - Pilot Operated

- V-Spool with Linear Flow Characteristic Can Improve System Performance
- Higher P-Gain in Controller Reduces Following Error
- Easier System Tuning

Standard Flow Curve
4WRLE 10 V55M

New Flow Curve
4WRLE 10 V55L

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Servo Solenoid Valves

- Protect each OBE with 2.5 Amp, Fast acting Fuse!
Valve Matrix and Project Worksheet (Hyvos)

Position-controlled actuators with proportional directional valve and external closed-loop control electronics

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications.
We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Matrix of proportional directional valves

<table>
<thead>
<tr>
<th>Valve model</th>
<th>Nominal flow (l/min)</th>
<th>Nominal Δp (bar)</th>
<th>Data sheet</th>
<th>Overshoot compensation (with E, W, gaug)</th>
<th>Typical application *</th>
<th>Open control loop</th>
<th>Closed-loop position control</th>
<th>Closed-loop pressure control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRA(E)</td>
<td>Size 6: 7, 15, 30</td>
<td>10</td>
<td>29055</td>
<td>Yes</td>
<td>Very Low</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 10: 90, 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRPE(E)</td>
<td>Size 6: 6, 18, 32</td>
<td>10</td>
<td>29025</td>
<td>Yes</td>
<td>Low</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 10: 50, 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRE(E)</td>
<td>Size 6: 4, 8, 16, 32</td>
<td>10</td>
<td>29051</td>
<td>No</td>
<td>Medium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Size 10: 25, 50, 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRSE</td>
<td>Size 6: 4, 10, 20, 35</td>
<td>10</td>
<td>29057</td>
<td>No</td>
<td>High</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Size 10: 25, 50, 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRPE(H)</td>
<td>Size 6: 2, 4, 12, 24, 40</td>
<td>70</td>
<td>29035</td>
<td>No</td>
<td>High</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Size 10: 50, 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRREH</td>
<td>Size 6: 4, 8, 12, 24, 40</td>
<td>70</td>
<td>29031</td>
<td>No</td>
<td>Very high</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4WS(E)x2E</td>
<td>Size 8: 2, 5, 10, 15, 20</td>
<td>70</td>
<td>29564</td>
<td>No</td>
<td>Very high</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Size 10: 20, 30, 45, 60, 75, 90</td>
<td>70</td>
<td>29563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4WRZ(E)</td>
<td>Size 10: 25, 50, 85</td>
<td>10</td>
<td>29115</td>
<td>No</td>
<td>Very Low</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Size 16: 100, 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 25: 220, 925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 32: 350, 920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 32: 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Very Low <10 Hz, Low 30 Hz, Med 60 Hz, High 120, Very High 250 Hz**

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Hydraulic Response of Cylinder

- Closed Loop Hydraulic Response Could Be Tested
- This does not include the Control Valve
- \(f_h = \text{Number of Oscillations per Second} \)
- Oscillations Reduce Due to Damping

\[
f_h = \frac{1}{T}
\]
Position Control with Valve and Cylinder

- Closed Loop Performance Depends on Valve and Cylinder
 - Valve Frequency Response f_v (from data sheet)
 - Hydraulic Natural Frequency f_h (simplified as a mass-spring model)
 - m: Moving Mass
 - C: Spring Constant of Fluid under Compression
 (fluid on each side of the piston acts like a spring)

\[
f_h = \frac{\sqrt{\frac{C}{m}}}{2\pi}
\]

\[
f_o = \frac{f_v f_h}{f_v + f_h}
\]

Hydraulic Natural Frequency

Valve Frequency

Hydraulic Mass-Spring Model

Plus Valve Response

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Closed Loop Analysis of Cylinder

- Spring Constant (Hooke’s Law)
 \[C = \frac{\Delta x}{F_x} \]
 Displacement of Spring
 Force acting on Spring

\[\Delta x = \frac{\Delta V}{A} \]
\[F_x = p A \]

\[p = \frac{\Delta V E}{V_o} \]

\[f_h = \sqrt{\frac{E A^2}{V_o m}} \]
\[2\pi \]

- Calculations Can Get Complicated
- Results are Only Approximate

\[\Delta V = \text{Volume change in cylinder } A \]
\[E = \text{Area of cylinder (each side)} \]
\[V_o = \text{Volume of trapped fluid} \]
\[m = \text{Effective mass} \]
\[2\pi \text{ radian/sec} = 1 \text{ Hz} \]
Axis Worksheet

- Define Application
- Cylinder Parameters
- Piping Parameters
- Supply Pressure
- Opposing Forces
- Command Profile

<table>
<thead>
<tr>
<th>Cylinder Parameters</th>
<th>Value</th>
<th>Unit</th>
<th>Comment (min, max, range, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore d</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Piston rod A</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Piston rod B</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Stroke s</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Internal bore of piston</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>External bore of piston</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Stroke stroke A</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Stroke stroke B</td>
<td></td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

© All rights reserved by Bosch Rexroth AG, even and especially in cases of proprietary rights applications. We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.
Closed Loop System Performance

- When Performance is Critical, Use Simulation to Confirm Proper Valve Selection and System Design
- Evaluate System
- Collect Machine Information (RE 08 200)
- Hyvos Simulation Might Be Needed to Confirm Design for Critical Applications
Thank You